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1. Introduction

The idea that cosmic strings might have formed in the early universe has been around for

some time, being a generic consequence of U(1) symmetry breaking. If observed, these long

filaments of energy stretched across the sky would be the highest energy objects ever seen.

Even more spectacular is the idea that these cosmic strings might be cosmic superstrings.

This idea was first proposed by Witten [1], but for several technical reasons this was found

to be unfeasible. Progress in superstring theory, particularly non-perturbative aspects,

allowed the subject to be revisited recently [2, 3] with encouraging results. For more

complete reviews of the subject see [4, 5].

Since it is now at least plausible that cosmic strings might be observed, it is important

to know how one might differentiate conventional cosmic strings from cosmic superstrings.

The former are classical objects, being an effective description of a field theory vortex

solution. Superstrings, however cosmically extended they may be, are inherently quantum

objects. Ideally these quantum fluctuations would provide observable differences in the

cosmic string’s behavior, allowing us to determine which type of string it is. The issue is

doubly important since experimental evidence of string theory from colliders is not expected

to be forthcoming in the near future, and this may be the best opportunity to prove string

theory is the correct theory of nature.
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Figure 1: When cosmic strings approach each other, there is some probability for them to recon-

nect.

Wound states appear in the perturbative spectrum of the bosonic, type II and heterotic

string theories but there has been relatively little investigation into their interactions.

The first was by Polchinski and Dai [6, 7] who used the optical theorem to compute the

reconnection probability for bosonic wound strings. Such scattering was also studied by

Khuri [8] finding that interaction is suppressed in the large-winding limit, whereas Mende

used path integral saddle points [9] to show that for some special configurations it may still

occur. Reconnection probabilities of wound superstrings were studied in [10], and further

investigation into the effect of backgrounds was performed in [11].

In this article we develop new methods for calculating cosmic superstring interactions.

We first review the reconnection process, and show explicitly that the probability of recon-

nection can be obtained by summing over all final kinked states. This method naturally

generalizes to the possibility of emitting radiation during reconnection, and allows us to

calculate the probability for this as well. We discuss the spacetime trajectory of the strings

during reconnection, as well as loop corrections to the interactions. A novel boundary

functional representation of the kinked string is also given. Finally we conclude with an

overview of upcoming experiments which might be sensitive to these signatures. To empha-

size the principles introduced here we study only the bosonic string, but the ideas should

easily generalize to the superstring.

2. The cosmic superstring vertex operators and states

We will model cosmic superstrings as wound fundamental string states. These will then

interact to form other wound states, but will typically be kinked due to the relative angle

between the initial states (see figure 1). The most straightforward way to study these

interactions is to construct vertex operators for all states. Consider two long, straight

wound strings on a 2D torus of size L and skew angle θ as illustrated in figure 2. The

momenta are taken to be

p1 =

[

(

L

2πα′

)2

− 4

α′

]1/2

(1, 0, 0, 0,0), L1 = L(0, 1, 0, 0,0), (2.1)

p2 =

[

(

L

2πα′

)2

− 4

α′

]1/2

[1 − v2]−1/2(1, 0, 0, v,0), L2 = L(0, cos θ, sin θ, 0,0). (2.2)
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Figure 2: We model cosmic superstrings as straight wound modes on a large torus, which will

then interact to form a kinked configuration.

These satisfy the conditions such there are no complications involving the branch cuts of

the vertex operators (see section 8.2 of [12]), and also the tachyonic mass-shell conditions

p2
iL = p2

iR =
4

α′
, piL/R = pi ±

Li

2πα′
.

The relevant vertex operators are: (i = 1, 2)

VT (z, z̄; pi) =
κ

2π
√

V
: eipiLXL(z)+ipiRXR(z̄) : (2.3)

where the volume V = V⊥L2 sin θ is the product of the the transverse volume and the 2D

torus (methods to calculate V⊥ can be found in [11]). Now examining the OPE of these

vertex operators (we will only consider the holomorphic side, the antiholomorphic side is

identical):

: eip1LXL(z) :: eip2LXL(0) : = z
α′

2
p1L·p2L : eip1LXL(z)+ip2LXL(0) :

= z
α′

2
p1L·p2L : (1 + izp1L · ∂XL(0) + . . .) ei(p1L+p2L)XL(0) : .

The Taylor expansion of the exponential shows the vertex operators of the infinite tower

of the produced states, which will appear kinked due to their large oscillator excitation

number N :

N − 1 = −α′

4
(p1L + p2L)2

= −2 − α′

2
p1L · p2L

∼ L2/α′.

Since p1R ·p2R = p1L ·p2L the result will be identical for the right-moving oscillators and so

Ñ = N . The vertex operators for the possible final states (labeled by index f) Vkink,f will

be the zN coefficient in the expansion of the exponential, each weighted by a coefficient

Mf . To extract these we simply take the contour integral in independent variables ǫ and

– 3 –
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ǭ around the origin:

∑

f

MfVkink,f (0; p1 + p2) = CS2

(

κ

2π
√

V

)2 1

(2πi)2

∮

0
dǫdǭ VT (ǫ, ǭ; p1)VT (0; p2) (2.4)

with CS2
= 32π3V/κ2α′ the normalization for sphere amplitudes. We have normalized the

r.h.s. of (2.4) so that these coefficients Mf are none other than the invariant amplitude1

to produce that final kinked state,

〈Vkink,f (∞;−pf )VT (1; p1)VT (0; p2)〉 = i(2π)2δ2(p1 + p2 − pf )Mf .

The number of possible final states is then that of a string excited along a single dimension

p1,

D(N) ∼ N−1e2π
√

N/6. (2.5)

Owing to this large degeneracy as N → ∞ in the cosmic string limit, it will be impossible

to explicitly write down this sum of kinked vertex operators, but there is a simple statistical

distribution. Consider the state corresponding to the sum of these vertex operators (2.4):

|kinks〉 =
α′

8π

(

κ

2π
√

V

)−1
∑

f

Mf |kinkf 〉 (2.6)

=
1

(2πi)2

∮

0
dǫdǭ |ǫ|−2(N+1)e

q

α′

2

P

n≥1
p1L·α−nǫn/n+p1R·α̃−n ǭn/n|p1 + p2〉.

The expectation value of the number operator Nn = 1
nα−nαn in this state is:

〈kinks|Nn|kinks〉
〈kinks|kinks〉 = 2

(

1

n
− 1

N + 1

)

, n ≤ N.

To evaluate the contours we have transformed the outgoing state contour variable ǫ → 1/ǫ

so that it is also taken around the origin, and then used the standard representation

(1 − x)−n =
1

Γ(n)

∫ ∞

0
dt tn−1e−t(1−x).

Although this is the spectrum expected for a kinked string, the distribution does not

converge to this mean state when the excitation number grows large, as can be seen by the

relative fluctuation:
〈(Nn − 〈Nn〉)2〉

〈Nn〉2
→ n.

It would be interesting to see whether there is any relation of this state to the kinky strings

studied by McLoughlin et al. [13].

1Note that since we have compactified 2 of the 4 Minkowski dimensions, all scattering must be considered

2-dimensional.
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Figure 3: The cosmic superstring reconnection probability is found by summing the scattering

amplitude over all final kinked configurations.

3. Reconnection

3.1 Tree-level

We can now use the expression (2.4) to calculate the reconnection probability that two

straight strings would scatter into any final kink state, which is the interaction cross-section

as shown in figure 3:

P =
1

4E1E2v

∫

dpf

2π

1

2Ef

∑

f

|Mf |2(2π)2δ2(p1 + p2 − pf ). (3.1)

To evaluate this we will use the orthonormal relation for two-point correlators on the

sphere (we assume that both Vi(pi) and Vj(pj) are on-shell vertex operators):

〈Vi(∞;−pi)Vj(0; pj)〉 =
8π

α′
(2π)2δ2(pi − pj)δij .

We also wish to transform the integral over phase space into a more useful form. Recall

that this is the space of all on-shell final states,

∑

f

∫

dpf

2π

1

2Ef
=

∑

f

∫

d2pf

(2π)2
2πδ(p2

f − m2
f ).

This delta function represents the change in phase space with respect to the 2-momentum

invariant p2
f , which gives poles at α′

4 m2
f ∼ L2/α′ = −1, 0, 1, 2, . . .. In the large-mass limit

of our cosmic strings we can perform an averaging over these poles,

∑

f

δ(p2
f − m2

f ) → α′

4
.
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This is same averaging of poles into a branch cut performed in [6, 10] in order to utilize

the optical theorem. The probability can now be easily calculated:
∫

dpf

2π

1

2Ef

∑

f

|Mf |2(2π)2δ2(p1 + p2 − pf )

=
α′2

16

∫

d2pf

(2π)2

∫

d2pj

(2π)2
〈
∑

f

M∗
fVkink,f (∞;−pf ) ×

×
∑

j

MjVkink,j(0; pj)〉(2π)2δ2(p1 + p2 − pf )

=
(CS2

α′)2

16

(

κ

2π
√

V

)4 1

(2πi)4
〈
∮

∞
d2η VT (∞;−p2)VT (η,−p1) ×

×
∮

0
d2ǫ VT (ǫ, p1)VT (0, p2)〉

=
C3

S2
α′2

16

(

κ

2π
√

V

)8 1

(2πi)4

[
∮

0
dηdǫ (ǫη)−(N+1)(1 − ǫη)−2

]2

=
8πκ2

α′V
(N + 1)2. (3.2)

Substituting back for N + 1 = −α′

2 p1L · p2L, taking the L → ∞ limit, and writing the

answer in terms of the dimensionless coupling gs, the probability of reconnection is simply

P = g2
s

Vmin

V⊥

(1 − cos θ
√

1 − v2)2

8 sin θv
√

1 − v2
, Vmin = (4π2α′)3. (3.3)

3.2 A better way to do this

Let us now rederive the results in the previous section, using an abbreviated notation which

will be very useful for more complicated interactions.

Just as we used the contour integral to extract the on-shell part of the : eip1X(z,z̄) : :

eip2X(0) : OPE, the |kinks〉 state will be the part of : eip1X(z,z̄) : |p2〉 that it is annihilated

by both L0 − 1 and L̃0 − 1:

(L0 − 1)|kinks〉 = (L̃0 − 1)|kinks〉 = 0.

A projection operator which accomplishes this can easily be constructed to be

P =
sinπ(L0 − 1)

π(L0 − 1)

sin π(L̃0 − 1)

π(L̃0 − 1)

=
1

2π

∫ π

−π
dσL eiσL(L0−1) 1

2π

∫ π

−π
dσR eiσR(L̃0−1)

so that

|kinks〉 =

(

κ

2π
√

V

)−1

PVT (1; p1)|p2〉 (3.4)

=

(

κ

2π
√

V

)−1 1

(2π)2

∫ π

−π
dσLdσR VT (eiσL , e−iσR ; p1)|p2〉.

– 6 –
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Identifying eiσL → ǫ, e−iσR → ǭ then yields the previous expression (2.6). The sum over

final states can now be written as simply

∫

dpf

2π

1

2Ef

∑

f

|Mf |2(2π)2δ2(p1 + p2 − pf ) =
32π3

α′
〈p2|VT (−p1)PVT (p1)|p2〉.

We can use merely a single P since like other projection operators P2 = P. It is then

straightforward to see that this yields (3.2). This formalism also allows us to make contact

with the use of the optical theorem [6, 10], written

∫

dpf

2π

1

2Ef

∑

f

|Mf |2(2π)2δ2(p1 + p2 − pf ) =

(

8π

α′

)2

Im 〈p2|VT (−p1)∆VT (p1)|p2〉

where ∆ is the closed string propagator with Feynman iǫ prescription,

∆ =
α′δ(L0 − L̃0)

2(L0 + L̃0 − 2 − iǫ)
.

Let us now trade the (anti)holomorphic operators L0, L̃0 for the worldsheet hamiltonian

H and momentum P operators:

H = L0 + L̃0 − 2,

P = L0 − L̃0.

The propagator can then be written as

Im ∆ =
α′

4i
δ(P )

(

1

H − iǫ
− 1

H + iǫ

)

=
πα′

2
δ(P )δ(H)

=
πα′

4
P.

This is then identical to the expression given above.

3.3 Intercommutation with radiation emission

The probability for intercommutation should also include the possibility that radiation

could be emitted in the process of reconnection. Such emission has been studied previously

using other techniques [14, 15] but here we show it is a simple generalization of the same

process used to compute ordinary reconnection probabilities. The amplitude that a single

state Vrad(k) will be emitted during the reconnection to kink f is given by

Arad,f (k) =

∫

d2z 〈Vkink′,f (∞;−p1 − p2 + k)Vrad(z;−k)VT (1; p1)VT (0; p2)〉. (3.5)

This amplitude represents four different field theory processes: the s-, t-, and u-channel

interactions as well as a contact term as shown in figure 4. Actually, only the first and

– 7 –
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Figure 4: The cosmic superstring reconnection process while emitting radiation represents four

diagrams in field theory. Only the first and last are found to be important in the cosmic string

limit.

last of these contribute. Consider the excitation number of the intermediate states: for the

s-channel this is the same excitation number as for the kink computed previously,

Ns − 1 = −α′

4
(p1L + p2L)2

∼ L2/α′

whereas for t- and u- this is

Nt,u − 1 = −α′

4
(piL − k)2

= −1 +
α′

4
m2

rad +
α′

2
piL · k

∼ −L/
√

α′.

Since we cannot have a negatively excited string, there are no intermediate states in these

channels.

Nonetheless, we consider the expression representing all four channels by writing the

expression for the sum over (perturbed) kink states in terms of the two distinct vertex

operator orderings, where we integrate in w to include the pole over the intermediate

states (rather than contour integrate to simply get the residue):

∑

f

Mrad,f (k)Vkink′,f (0; p1 + p2 − k) =

CS2
α′

4π

(

κ

2π
√

V

)2 1

(2πi)2

∮

0
dǫdǭ

∫

|w|<1
d2wVrad(ǫ;−k)VT (w; p1)VT (0; p2)

+(Vrad(−k) ↔ VT (p1)),

|kinks′〉 =
8π

α′
P (Vrad(−k)∆VT (p1)|p2〉 + VT (p1)∆Vrad(−k)|p2〉) .

With the new possibility that the radiation could be directed into the x-y plane, there is the

slight complication that we have compactified along these directions so the momentum must

be discrete rather than continuous. As appropriate in the large-L limit, we approximate

– 8 –
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the sum over KK modes as an integral over continuous momenta times the compactification

volume,
∑

k

→ L2 sin θ

∫

d3k

(2π)2
1

2Ek

.

We also add a 2D sum over pf and momentum-conservation integral, for which the volume

factors cancel,
∑

pf ,xy

δ2
k+pf ,xy →

∫

d2pf,xy

(2π)2
(2π)2δ2(kxy + pf,xy).

Making these modifications to the reconnection probability given in (3.3), we arrive at

Prad =
L2 sin θ

4E1E2v

∫

d3pf

(2π)3
1

2Ef

d3k

(2π)3
1

2Ek

∑

f

|Mrad,f (k)|2(2π)4δ4(p1 + p2 − k − pf ). (3.6)

This is evaluated using the same techniques as in the simple reconnection case, averaging

the poles of pf (but not k), and multiplying by an additional (2π
√

α′)−2 for the units

introduced by the propagators,

∫

d3pf

(2π)3
1

2Ef

∑

f

|Mrad,f (k)|2(2π)4δ4(p1 + p2 − k − pf )

=
8π

α′2
〈p2|VT (−p1)∆Vrad(k)PVrad(−k)∆VT (p1)|p2〉 + perms.

Using the integral representation of the propagator,

∆ =
α′

4π

∫

|z|<1

d2z

|z|2 zL0−1z̄L̃0−1

we can act on the radiation vertex operators in every permutation, since Vrad will always

be adjacent to either |p2〉 or P. For example,

zL0−1Vrad(1)|p2〉 = zL0−1Vrad(1)z
−(L0−1)|p2〉

= Vrad(z)|p2〉.

Adding all permutations together (corresponding to different regions of integration for the

radiation), this results in integration over the entire complex plane. We then interpret

the reconnection process as a background for the radiation, meaning we neglect the cross-

radiation term2 as well as the effect that the radiation would have on the projection onto

physical states. The resultant sum over final states is then simply (neglecting phase-space

factors)

∑

f

|Mrad,f |2 =
8π

α′2
〈p2|VT (−p1)PVT (p1)|p2〉

∣

∣

∣

∣

∫

d2z Vrad[k;Xcl(z, z̄)]

∣

∣

∣

∣

2

(3.7)

2Besides the intuition that such cross-radiation terms should be negligible, for more realistic relativistic

radiation we would have α′

2
k

2
≈ 0, and the correlation between radiation vertex operators disappears.

– 9 –
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where the classical position Xcl is defined as the mean value during the reconnection,

Xcl(z, z̄) =
〈p2|VT (−p1)PX(z, z̄)VT (p1)|p2〉

〈p2|VT (−p1)PVT (p1)|p2〉

= i
∂

∂k

∣

∣

∣

∣

k=0

ln 〈p2|VT (−p1)P : e−ikX(z,z̄) : VT (p1)|p2〉

= i
∂

∂k

∣

∣

∣

∣

k=0

ln

[

z−
α′

2
k·p2L(z − 1)−

α′

2
k·p1L

∮

0
dǫ ǫ−(N+1)(1 − ǫ)−2(1 − ǫz)

α′

2
k·p1L

×(L → R)

]

= −i
α′

2
p2L ln z − i

α′

2
p1L

[

ln(z − 1) +

N
∑

n=1

(

1

n
− 1

N + 1

)

zn

]

+ (L → R). (3.8)

The straight-string vertex operators produce the terms −iα′

2 p2L ln z and −iα′

2 p1L ln(z− 1),

which have the expected branch cut on the real axis for z ≤ 0, 1 representing the windings

L2, L1, respectively, as one crosses the cuts. In the large-winding limit we see there is an

additional branch cut produced on this axis for z ≥ 1,

Xcl(z, z̄) → −i
α′

2
p2L ln z − i

α′

2
p1L ln

(

z − 1

1 − z

)

+ (L → R) as N → ∞. (3.9)

As one crosses this at large z, the two branch cuts conspire to replace the gradual winding

on L1 with a step-function.

The probability (3.6) can now be written as the simple probability P0 times a radiative

phase-space factor:

Prad =
L2 sin θ

4E1E2v

8πκ2

α′V
(N + 1)2

(

κ

2π
√

V

)2 α′

(4π)4

∫

d3k

(2π)3
1

2Ek

∣

∣

∣

∣

∫

d2z Vrad[k;Xcl(z, z̄)]

∣

∣

∣

∣

2

= P0

(

α′g2
sVmin

(4π)4V⊥

)
∫

d3k

(2π)3
1

2Ek

∣

∣

∣

∣

∫

d2z Vrad[k;Xcl(z, z̄)]

∣

∣

∣

∣

2

. (3.10)

This partly illuminates a puzzle discovered in [10], that there is a 1/v divergence in the fun-

damental string reconnection probability. Since the integrand in (3.10) universally contains

the exponential of p2zkz ∝ vkz, the integration over kz will result in an additional factor of

1/v (recall the original 1/v originated from the incoming strings’ kinematic factor). Again

taking the cross-radiation effects to be negligible, the result immediately generalizes to

multiple radiative emissions:

Prad,n = P0

(

α′g2
sVmin

(4π)4V⊥

)n n
∏

i=1

∫

d3ki

(2π)3
1

2Ek,i

∣

∣

∣

∣

∫

d2zi Vrad[ki;Xcl(zi, z̄i)]

∣

∣

∣

∣

2

.

The probability that there are n states radiated during reconnection will have n such

radiated momenta integrals and produce a factor of 1/vn. The tree-level reconnection

probability can then be put in the form

P =

∞
∑

n=0

Pn

(

g2
s

v

)n+1

.

– 10 –



J
H
E
P
0
9
(
2
0
0
7
)
0
3
5

Figure 5: The reconnection process from the worldsheet viewpoint. The red, green and blue colors

represent vertex operators at z = {0, 1,∞}, respectively.

This implies that the effective coupling seen by the strings is actually λ ≡ g2
s/v so that

the perturbative, small velocity limit should be defined by g2
s → 0, v → 0 and fixed λ.

Loop corrections to this simply add factors of g2
s which vanish, so in some sense the strings

become classical in this limit.

The resultant integral of the radiation vertex operator over z is then easily evaluated

since as explained in [16] the radiation amplitude drops exponentially with energy unless

there exist double saddle points k · ∂X(z0) = k · ∂̄X(z∗0) = 0 (such as for a cusp) in

which case it is a slower power-law decay or when the (say) holomorphic side has a saddle

point and the antiholomorphic derivative is discontinuous (such as for a kink), which is

what happens in (3.9). The radiation properties of the reconnection are currently being

investigated in more detail [17].

4. Spacetime picture of string reconnection

Of course the classical trajectory (3.8) cannot literally be interpreted as the spacetime

path swept out by the superstrings during reconnection, since it is not reparameterization-

invariant: only the amplitude
∫

d2z Vrad[X(z, z̄)] is meaningful. But it can give us some

idea of how string theory sees the reconnection process, both from the worldsheet and

spacetime viewpoints.

In figure 5 the string worldsheet is shown with the coloring added to illustrate how

these asymptotic string states smoothly reconnect: red, green and blue indicate the “pure”

states at {0, 1,∞}, respectively. Good local coordinates near the straight-string vertex

operators at zi = {0, 1} are eτ+iσ = z − zi, and for the kinked state placed at infinity we

use eτ+iσ = 1/z. In these coordinates σ → σ+2π generates X → X +Li. In the spacetime

– 11 –
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Figure 6: A qualitative representation of the reconnection process from the spacetime viewpoint

(the z-axis has been projected out).

embedding of only the straight string vertex operators −iα′

2 p2L ln z and −iα′

2 p1L ln(z − 1)

shown in figure 6, we see the initial straight wound strings arrive from t → −∞, then

smoothly join into a single kinked string as t → ∞. Although the strings appear to break,

this is merely the effect of the worldsheet embedding into spacetime and then slicing it

with respect to t.

5. Loop corrections

We have seen that the probability of reconnection should include not just the probability of

simple reconnection but processes which produce radiation. In fact one should also include

higher-order corrections for each of these (omitting phase-space factors),

P =
1

4E1E2v

∑

f

[

|M(0)
f + M(1)

f + · · · |2 + |M(0)
rad,f + M(1)

rad,f + · · · |2 + · · ·
]

.

The most convenient way to compute the loop effects would be to compute the correction

to the total cross-section:

P =
1

2E1E2v

∑

n≥0

Im M(n)
∣

∣

∣

t=0
. (naive) (5.1)
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In [10] it was noted that this diverged at higher loops since M(n) ∼ L2+2n, but the cause

was suspected to be the incorrect inclusion of amplitudes having multiple final kinked

string states, each state having normalization ∼ L2/α′. The correct approach would be

evaluating (5.1) while excising the intermediate states containing multiple kinked strings

(since these would not correspond to a reconnection!). This could be done by keeping only

the part of each M(n) proportional to L2, corresponding to final states containing only a

single kinked string. Investigation along these lines is underway [18].

6. Radiation

Now let us consider radiation not from reconnection, but simply emitted from a string

state as it evolves. There is now vast literature on gravitational radiation from classical

cosmic strings (see for example [16, 19, 20]). This is computed by Fourier transforming the

functional derivative of the string action,

T µν(k) =

∫

dDx e−ikx δ

δgµν

1

2πα′

∫

d2z gµν∂Xµ∂̄XνδD(X(z, z̄) − x)

=
1

2πα′

∫

d2z ∂Xµ∂̄Xνe−ikX . (6.1)

Note that this can be interpreted as a graviton vertex operator integrated over the world-

sheet. As explained previously, this is largest when both k · XL(z) and k · XR(z̄) develop

saddle points (such as in a cusp), or when one does and the other develops a discontinuity

(such as in a kink). By substituting in a suitable solution for X(z, z̄) around this point

one can calculate the radiation emitted.

We would now hope to calculate the same quantity for cosmic superstrings from first

principles; that is, use vertex operators to represent the radiation (not necessarily gravita-

tional) as well as for the cosmic string states themselves. For the radiation emitted from a

cosmic string of vertex operator Vcs(p), the amplitude is

Arad,f (k) = 〈Vcs′,f (∞;−p + k)Vrad(1;−k)Vcs(0; p)〉.

However, it would be much easier to compare to the classical answer if we could use an

effective string action, at least for the massless radiation:

Seff =
1

2πα′

∫

d2z
[

gµν(X)∂Xµ∂̄Xν + O(α′)
]

where this is defined as performing the path integral over quantum fluctuations in a classical

background,

e−Seff [Xcl] =

∫

[DX ′]
∣

∣

X=Xcl+X′ [Dh]e−S[X,h].

Evaluating this path integral is actually trivial because we know there should be no correc-

tions to the classical action, string theory being defined by the condition that the worldsheet

beta functionals are all zero! Thus the classical source (6.1) is correct even for quantum

superstrings (modulo the addition of fermions). There will still be differences in the ac-

tual signal measured by a gravitational wave detector since the graviton must propagate
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according to the α′-corrected General Relativity of string theory, but the source term will

be the same. Recently the small-scale structure which underlies this radiation emission has

recently been studied in [21 – 23].

In order to ensure the beta functions are indeed zero it is necessary to represent the

cosmic superstring as a physical string state (that is, satisfies the Virasoro constraints).

This is a different approach taken from [24] who model the cosmic superstring as a semi-

classical coherent state. This then produces very small corrections in the source term,

though still too small to be observed.

For massive radiated states it is completely straightforward to compute the emission

decay rate using the same technique as that used for the reconnection probability, where

the sum over amplitudes and final states can be computed from the distribution

∑

f

Mrad,f (k)Vcs′,f(0; p − k) = CS2

(

κ

2π
√

V

)2 1

(2πi)2

∮

0
dǫdǭ Vrad(ǫ, ǭ;−k)Vcs(0; p).

Of course the total decay rate must equal that given by the imaginary part of the one-loop

mass correction,

Γ =
1

m
Im 〈Vcs(−p)Vcs(p)〉T 2 .

This is the approach used to calculate the decay rate for highly excited cosmic string ‘loops’

which have broken off of large winding modes [25, 26].

7. Boundary functionals and (p, q) strings

The methods we have developed here work exclusively for fundamental cosmic superstrings.

It would be theoretically and practically convenient to generalize this to D-strings [27]

and (p, q)-strings [28]. The interactions of these have been studied using either a string

worldsheet with boundary conditions or as field theories living on the D-string worldvol-

ume [10, 29, 30].

One might try to formulate such a general approach for string interactions by defining

boundary functionals to represent the fundamental strings; that is, states defined on the

unit circle which are a function of the coordinate modes Xn = 1
2π

∫ 2π
0 X(σ)e−inσdσ. For

the straight strings (formerly represented as wound tachyon vertex operators) these states

|W 〉 are simply gaussian distributions reflecting the fact that they are unexcited ground

states,

〈Xn|W 〉 ∝ e−
n

α′ XnX−n .

For the kinked fundamental string states defined in (2.6) the answer is more interesting.

We attempt to construct such a state |K〉 by factoring the kink state as

|kinks〉 = ∆|K〉 (7.1)

where ∆ is the closed string propagator. To accomplish this, let us reexamine the earlier

process used to construct the kink states in terms of a projection operator of H and P .
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Re-writing (3.4) in terms of these operators, we get an expression which can be factorized

into the desired form of (7.1):

|kinks〉 =
sinπP

πP

sin(πH/2)

πH/2
VT (1; p1)|p2〉

= ∆
sin(πH/2)

α′π/2
VT (1; p1)|p2〉.

Thus we identify our boundary functional as

|K〉 =
4

πα′
sin

πH

2
VT (1; p1)|p2〉. (7.2)

Such a sin πH/2 factor should be familiar from amplitudes which factor closed string am-

plitudes into (anti)holomorphic components. To write this in a more useful form, represent

the operator as the difference of exponentials

sin
πH

2
=

1

2i

(

eiπH/2 − e−iπH/2
)

.

This can now easily act on VT (1; p1)|p2〉 to produce

|K〉 = |+〉 − |−〉

where we have defined the coherent states

|±〉 ≡ 2

πα′i
: eip1LXL(i)+ip1RXR(i) : |p2〉

=
2(±i)

α′

2
(p1L·p2L+p1R·p2R)

πα′i
e

q

α′

2

P

n≥1
p1L·α−n(±i)n/n+p1R·α̃−n(±i)n/n|p1 + p2〉,

〈Xn|±〉 ∝ exp
[

− n

α′

(

Xn − iα′p1R(±i)n/n
) (

X−n − iα′p1L(±i)n/n
)

]

.

Though there are an infinite number of oscillator excitations the propagator ∆ will project

only onto the on-shell portion of this. Thus the state can be thought of heuristically as

VT (p2) at the origin and VT (p1) placed at ±i, though it is not a usual vertex operator

V (z, z̄) in the sense that z̄ is not the complex conjugate of z.

Even though we have defined these states |W 〉 and |K〉 on the unit circle in an attempt

to make them similar to D-branes, they are not boundary states in that they do not

define boundary conditions: there is “charge” (in the form of the vertex operator VT (p1))

located on the boundary so it is impossible to fix boundary conditions there. It would

be interesting to see whether this novel representation of the kink can be used for more

efficient computation of the interactions.

8. Discussion and conclusion

It is now possible to calculate the interaction and radiation for cosmic superstrings as well

as their classical counterparts. This is particularly exciting due to the increasing sensitivity

of experiments to cosmic string radiation, stochastic as well as directed bursts. Bounds
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on these currently exist from various sources such as LIGO S4, pulsar timing, big bang

nucleosynthesis, and the cosmic microwave background, with potential further bounds from

advanced LIGO and LISA [31 – 34]. These bounds are very dependent upon parameters

such as the dimensionless string tension parameter Gµ, probability of reconnection P , loop

size parameter ǫ and radiative parameter α [20]. With the tools developed in this article

one can begin to study the phenomenology of models based on superstring parameters α′

and gs, plus specifics of compactification [11]. If even a single cosmic string is found, one

can get an observational estimate of P (θ, v) from examining the kinks on the string as it has

reconnected during its lifetime. A low P ∼ g2
s suggests a fundamental cosmic superstring

such as those studied here, whereas a higher P ∼ 1 suggests a classical vortex cosmic string

or (p, q)-string. The angle- and velocity-dependent reconnection probability can easily be

incorporated into a simulation or analytic study [21] to study the abundance of cosmic

strings present today. It might also be relevant to string-gas studies since winding string

interaction rates could influence the decompactification rate of the universe [35].
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